Inflammatory mediators enhance the excitability of chronically compressed dorsal root ganglion neurons.

نویسندگان

  • C Ma
  • K W Greenquist
  • R H Lamotte
چکیده

A laterally herniated disk, spinal stenosis, and various degenerative or traumatic diseases of the spine can sometimes lead to a chronic compression and inflammation of the dorsal root ganglion and chronic abnormal sensations including pain. After a chronic compression of the dorsal root ganglion (CCD) in rats, the somata in the dorsal root ganglion (DRG) become hyperexcitable, and some exhibit ectopic, spontaneous activity (SA). Inflammatory mediators have a potential role in modulating the excitability of DRG neurons and therefore may contribute to the neuronal hyperexcitability after CCD. In this study, an inflammatory soup (IS) consisting of bradykinin, serotonin, prostaglandin E2, and histamine (each 10(-6) M) was applied topically to the DRG. The responses of DRG neurons were electrophysiologically recorded extracellularly from teased dorsal root fibers or intracellularly from the somata in the intact DRG or from dissociated neurons within 30 h of culture. In all three preparations, IS remarkably increased the discharge rates of SA CCD neurons and evoked discharges in more silent-CCD than control neurons. IS slightly depolarized the resting membrane potential and decreased the current and voltage thresholds of action potential in both intact and dissociated neurons, although the magnitude of depolarization or decrease in action potential threshold was not significantly different between CCD and control. IS-evoked responses were found in a proportion of neurons in each size category including those with and without nociceptive properties. Inflammatory mediators, by increasing the excitability of DRG somata, may contribute to CCD-induced neuronal hyperexcitability and to hyperalgesia and tactile allodynia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple sites for generation of ectopic spontaneous activity in neurons of the chronically compressed dorsal root ganglion.

In a chronically compressed dorsal root ganglion (CCD) in the rat, a model of foraminal stenosis and radicular pain in human, a subpopulation of neurons with functional axons exhibits spontaneous activity (SA) that originates within the ganglion. Intracellular electrophysiological recordings were obtained from the somata of neurons of the compressed ganglion both in vitro and in vivo. The SA wa...

متن کامل

The Neuroprotective Effect of Nepeta menthoides on Axotomized Dorsal Root Ganglion Sensory Neurons in Neonate Rats

Background and Objective: Sensory neurons have critical role in improvement of functional outcome of any neuroprotective strategy. The herbal medicine Nepeta menthoides has been reported to have anti-apoptotic effect on axotomized spinal motoneurons. In the present study, the putative neuroprotective effect of Nepeta menthoides on the axotomized dorsal root ganglion sensory neurons in neonate r...

متن کامل

[Decreased A-type potassium current mediates the hyperexcitability of nociceptive neurons in the chronically compressed dorsal root ganglia].

The excitability of nociceptive neurons increases in the intact dorsal root ganglion (DRG) after a chronic compression, but the underlying mechanisms are still unclear. The aim of this study was to investigate the ionic mechanisms underlying the hyperexcitability of nociceptive neurons in the compressed ganglion. Chronic compression of DRG (CCD) was produced in adult rats by inserting two rods ...

متن کامل

Morphological Identification of Cell Death in Dorsal Root Ganglion Neurons Following Peripheral Nerve injury and repair in adult rat

Background: Axotomy causes sensory neuronal loss. Reconnection of proximal and distal nerve ends by surgical repair improves neuronal survival. It is important to know the morphology of primary sensory neurons after the surgical repair of their peripheral processes. Methods: Animals (male Wistar rats) were exposed to models of sciatic nerve transection, direct epineurial suture repair of sciati...

متن کامل

Expression of inwardly rectifying potassium channels by an inducible adenoviral vector reduced the neuronal hyperexcitability and hyperalgesia produced by chronic compression of the spinal ganglion

BACKGROUND A chronic compressed dorsal root ganglion (CCD) in rat produces pain behavior and an enhanced excitability of neurons within the compressed ganglion. Kir2.1 is an inwardly rectifying potassium channel that acts to stabilize the resting potential of certain cell types. We hypothesized that an inducible expression of Kir2.1 channels in CCD neurons might suppress neuronal excitability i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 95 4  شماره 

صفحات  -

تاریخ انتشار 2006